EUROPEAN COMMISSION HORIZON 2020 PROGRAMME - TOPIC H2020-LC-BAT-2020

Solutions for large batteries for waterborne transport

GRANT AGREEMENT No. 963560

D4.1 – Design, development and implementation of advanced strategies for battery temperature regulation

Report details

Deliverable No.	SEABAT D4.1	
Deliverable Title	Design, development and implementation of advanced	
	strategies for battery temperature regulation	
Deliverable Date	30/04/2023	
Dissemination level	Confidential – member only (CO)	СО
Authors	Nelson Mateus Pippi Lorenzoni (ABEE),	
	Mohammed Morshed (ABEE), and	/ /
	Jagadish Babu Vemula (ABEE)	20/04/2023
	Markus Geus (FHG- IISB)	
	Bakartxo Egilegor (IKERLAN)	
WP leader	Amaia Lopez de Heredia (IKERLAN)	
Reviewers	Mikel Rivas (IKERLAN) and Thomas Pfeiffer (FHG-LBF)	28/04/2023
	Mohsen Akbarzadeh (FM)	
Coordinator	Jeroen Stuyts (FM)	

Document History

Version	Date	Editing done by	Remarks
V01	01/04/2023	Nelson Lorenzoni	Draft for internal review
V02	20/04/2023	Nelson Lorenzoni	Draft for external review
V03	26/04/2023	Mikel Rivas	Format changes Summary at the beginning of each Chapter Add Appendix B: Thermal characterization.
V04	28/04/2023	Mikel Rivas	Move some Chapters to Appendix A, Appendix C and Appendix D
V4.0 Final	10/05/2023	Cor van der Zweep	Prepared for submission

Project Abstract

The goal of the SEABAT project is to develop a full-electric maritime hybrid battery concept that is based on:

- 1 Modularly combining high-energy batteries and high-power batteries,
- 2 Novel converter concepts and
- 3 Production technology solutions derived from the automotive sector.

The modular approach will reduce component costs (battery cells, convertors) so that unique ship designs can profit from economies of scale by using standardized low-cost components. The concept will be suitable for ships requiring up to 1 MWh of storage or more.

 $\mathsf{D4.1}-\mathsf{Design},$ development and implementation of advanced strategies for battery temperature regulation-CO 2

Public summary

The SEABAT project aims to create a Hybrid Energy Storage System (HESS) for marine applications. To ensure the new product meets the performance requirements, it's essential to understand the performance of existing marine battery systems in terms of design and functional requirements, system safety. Here, the HESS will combine two different battery technologies to optimize performance for specific vessel requirements. The main objective of the SEABAT project is to develop a flexible, scalable, energy-efficient, and cost-effective HESS architecture for marine applications. This system architecture will balance ship energy and power requirements by using a mix of high-energy and high-power batteries. The HESS architecture will be scalable to at least 1 MWh and validated at a level of 300 kWh, while taking into account virtual upscaling.

Task 4.4 of WP4 is dedicated to consolidating the scalable system architecture and design of the cooling circuit proposed under the battery thermal management system, as outlined in D3.2 and D3.3 of the SEABAT project. Deliverable 4.1 provides an in-depth analysis of the advanced strategies used for battery temperature regulation, from the module level to the HESS level. The deliverable outlines the functional and safety requirements necessary for selecting thermal components and designing the overall battery thermal management system, based on international marine application standards. Additionally, the document provides detailed analysis of the heat transfer and energy losses in the batteries and DCDC converter, along with the coolant distribution through the piping system using theoretical, 1D /3D CFD and FEM simulations.

15 Acknowledgements and disclaimer

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Project partners:

#	Partner	Partner Full Name
1	FM	FLANDERS MAKE
2	DAMEN	SCHEEPSWERF DAMEN GORINCHEM BV
3	FCSI	FINCANTIERI SI SPA
4	RINA	RINA SERVICES SPA
5	SOERMAR	FUNDACION CENTRO TECNOLOGICO SOERMAR
6	VARD	VARD ELECTRO AS
7	ABEE	AVESTA BATTERY & ENERGY ENGINEERING
8	IMECAR	IMECAR ELEKTRONIK SANAYI VE TICARET LIMITED SIRKETI
9	UNR	UNIRESEARCH BV
10	CEA	COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
11	Fraunhofer	FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
12	IKERLAN	IKERLAN S. COOP
13	MGEP	MONDRAGON GOI ESKOLA POLITEKNIKOA JOSE MARIA ARIZMENDIARRIETA S COOP
14	SINTEF	SINTEF ENERGI AS
15	POLITO	POLITECNICO DI TORINO

Copyright ©, all rights reserved. This document or any part thereof may not be made public or disclosed, copied or otherwise reproduced or used in any form or by any means, without prior permission in writing from the SEABAT Consortium. Neither the SEABAT Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or

expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained.

All Intellectual Property Rights, know-how and information provided by and/or arising from this document, such as designs, documentation, as well as preparatory material in that regard, is and shall remain the exclusive property of the SEABAT Consortium and any of its members or its licensors. Nothing contained in this document shall give, or shall be construed as giving, any right, title, ownership, interest, license or any other right in or to any IP, know-how and information.

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 963560. The information and views set out in this publication does not necessarily reflect the official opinion of the European Commission. Neither the European Union institutions and bodies nor any person acting on their behalf, may be held responsible for the use which may be made of the information contained therein.