

Battery Sources and Power Converters Interface in Waterborne Transport Applications

Workshop "Hybrid Energy Storage Systems Oriented to Maritime Applications"

Fabio Mandrile, Politecnico di Torino (fabio.mandrile@polito.it)

Background

Electrification of the maritime propulsion

- Crucial role of storage systems
- What is the best arrangement for converter + battery system?
- Possibility of hybrid battery systems (high energy + high power)

Storage Systems for Waterborne Transport

1 000 000 Various technologies are available Capacitors High-power (e.g., SuperCaps) 1000 00 High-energy Specific Power (W/kg) 10 000 ✓ Li-ion are preferred 1000 **Super - Capacitors** 100 **Lithium Polimer** Gravimetric Energy Density (Wh/kg) 250 **Batteries** Prismatic Lithum Families 200 10 **Lithium Phosphate** 150 **Lithium Ion** Cylidrical 1.00 0.01 0.10 10.00 100 Specific Energy (Wh/kg) **Aluminium Cans Nickel Cadmium** Prismatic 50 Lead Acid **Nickel Metal Hydride** 0 50 100 150 200 250 300 350 400 450

Volumetric Energy Density (Wh/L)

Politecnico

10 000.00

Fuel Cells

1000.00

100.00

Storage Requirements and Management

- Requirements:
 - Maximum power
 - Minimum energy
 - Number of cycles
- Operating cycle as input
- Goal minimize cost of battery pack
- Hybrid solution is an option!

- Requirements:
 - Bidirectional (charging & discharging)
 - Isolated
 - High efficiency
 - Small and light
 - Optimal exploitation of battery (increased lifetime)

https://epod.com.sg/e-pod-propulsion-system/

- Basic Topology
 - Monotype battery only!
 - Variable DC voltage with SoC
 - Oversizing

- Interface DC/DC
 - Monotype battery
 - DC voltage adaptation: no oversizing
 - Is it possible to do better?

- Semi Active Structure for Hybrid storage systems
 - Allows mix of battery technologies
 - One technology is directly connected to output
 - Second technology is converter interfaced
 - Variable DC output with SoC
 - Converter oversizing

- Full Active Structure for Hybrid storage systems
 - Allows mix of battery technologies
 - Dedicated converter for each technology
 - Regulated DC output
 - Regulated sharing and stress on batteries
 - Higher complexity!

- Partial power processing
 - Converter reduction
 - Conversion efficiency improvement
 - Less complexity, volume and weight compared to active structures
 - No galvanic isolation!

Conclusion

- Maritime electrification is growing
- Storage integration is open topic
- Hybrid storage systems with different technologies are appealing solution
- Optimization strategies for battery packs are required
- Converter topologies for storage interface are subject of optimization too

