

MARKET NEEDS AND REGULATIONS

ACADEMIC WORKSHOP

10 JUNE 2022

- WP 1 overview
- D1.1 Emission target within 5, 10 and 15 years
- D1.2 Market evolution and potential within 5, 10, 15 years for different marine applications
- D1.3 Road map for battery productions
- D1.4 Impact on battery production in EU and its circular economy

Market needs and regulations

WP1- Market needs and regulations focuses on:

- The real market projections and economic aspects linked to battery systems in ships
- On the analysis of the regulations for the reduction of emissions and on the effect it has on the market of energy storage systems on board of vessels
- This will result in a roadmap for battery production and cost targets, taking into account circular economy in Europe

The main objectives are to:

- Understand what are the real market projections on the emission reduction and what are the
 economic aspects linked to the battery systems for ships, which is one of the main elements to be
 used to reduce the emissions in general
- To investigate what are the current rules and regulations and what are the modifications of the rules in the following 15 years which will be applied and how those will affect the shipowners' choices.

This will be carried out by the analysis of the European and International regulations (e.g. IMO, MARPOL, etc), currently in force and coming in, to establish the challenges and requirements with a horizon of 5, 10 and 15 years

Overview of actual emissions from the maritime sector defining the contribution of different types of ships Figure 5 – International, voyage-based allocation, HFO-equivalent fuel consumption (thousand tonnes), 2018, split by main engine, auxiliary engine and boiler. Highlighted values are in thousand tonnes.

- Analysis of IMO actions to reduce GHGs
- Overview of solutions applicable to ships

Analysis of ships equipped with batteries from different data sets and prediction of growth potential

- Overview of some applications currently in operation
- Presentation of the main electrical diagrams on board with battery systems

Project name	Type of vessel	Operation capacity	Storage capacity	Cell chemistry
FellowSHIP	Offshore Sypply Vessel	Hybrid propulsion	450 kWh	NMC
MF Ampere	Car Ferry	All-electric powered	1000 kWh	NMC
Sustaniable Traffic Machines II	Ro-Pax Vessel	Hybrid propulsion	1600 kWh	NMC
Sustaniable Traffic Machines II	Ro-Pax Vessel	Hybrid propulsion	2600 kWh	NMC
Zero Emission Ferries	Ro-pax Vessels	All-electric powered	4160 kWh	-
Motorway of the Sea link Rodstcok-Gedser	Ro-Pax Vessels	Hybrid propulsion	1600 kWh	NMC
E-ferry	Ferry	All-electric powered	4300 kWh	NMC
Yara Birkeland	Container ship Vessel	All-electric powered	9000 kWh	-
Port-Liner	Inland waterway barge	Full electrict propulsion	6720 kWh	-

FINCANTIERI S

Trend analysis based on data from ships currently in circulation.

Battery capacity installed onboard is growing mainly due to this reasons:

- The decreasing prices of ESS
- Better ESS performance, smaller footprint and reduced weight
- Large ships are interested in using batteries for hybrid applications
- Small ships, thanks to the new density of batteries, can be converted into full battery electric ships

Larger vessels adopting ESS for hybrid propulsion system mainly for these reasons:

- Larger ships are more subject to retrofit work to extend their useful life
- Batteries improve overall performance, efficiency, maneuverability, back up function to prevent black-out...

After an analysis of the different ship and applications, a great variability emerged in the capacity of the batteries adopted on board the ship, demonstrating the importance of a modular and expandable system.

For the analysis the market was divided according to the size of the batteries and analyzed in 3 different scenarios (AVG, MIN, MAX):

- 100-1000 kWh: mainly hybrid applications for small vessels
- 1000-3000 kWh: hybrid applications for large ships and full battery propulsion for small ships
- 3000 kwh: hybrid applications for large ships and battery propulsion for small ships with greater autonomy

The analysis are based on the orderbook for new ships and on the experience of Damen and Fincantieri in identifying the dimensions of the energy storage associated with each type of ship.

For larger ships, a retrofit provision was also introduced with the installation of ESS.

The figure on the side shows a confirmation on the increase in the size of the batteries used.

We can also see how the main market share in the first period could be dominated by large ESS installations (> 3000 kWh), moreover it is also less inclined to growth this is due to the type of vessels that have lower numbers and usually each intervention is scheduled for years in advance.

Over the years it looks like mid-sized applications will see strong growth.

It also appears that the lower price and better performance of the batteries will make it more attractive to install medium-sized energy storage units than smaller ones.

FINCANTIERI S

Market forecast

Trend price of the main chemistries of lithium batteries

Li-ion battery price outlook for

FINCANTIEF

evolving integration

electric cars vs waterborne transport

Analysis price base on data collected from Damen and Fincantieri applications

Figure 16 - Battery cost (Based on average for system between 100 kWh and 4 MWh)[1].

Table 4 -- Battery electric or hybrid electric ship with energy battery (cruise ship, ferry, ...)

Typical battery size: 500 kWh – several tens of MWh			*ESU: Energy storage unit	
		Current	Target 2035	
Typical market size (GWh/year)		~0.2	~4	
KPI (ESU* level)	Conditions	State of art	Target 2030	
Cell/ESU weight ratio (%)	Full ESU (including rack, gas exhaust system, BTMS, BMS)	60	70	
Cell/ESU volume ratio (%)	Full ESU (including rack, gas exhaust system, BTMS, BMS)	30	60	
Operating lifetime expectation	10 years of operation	~50,000-80,000h	(<ship lifetime)<="" th=""></ship>	
Cost (€/kWh)	Full ESU (including rack, gas exhaust system, BTMS, BMS)	600-700	250-300	
KPI (cell level)	Conditions	State of art	Target 2030	
Gravimetric energy density (Wh/kg)	1C charge and 3C discharge, 25°C	~180	350	
Volumetric energy density (Wh/L)	1C charge and 3C discharge, 25°C	400-500	800-1,000	
Cycle life [80% SOH] (nb of cycles)	70% DOD, 25°C, 1C charge and discharge	5,000-8,000	>10,000	
Hazard level	EUCAR cell-level safety performance	<=5	<=2	
Cost (€/kWh)		150	75	

Table 5 --- Battery electric or hybrid electric ship with power battery (offshore vessel, drilling vessel, hybrid fuel cell, ...)

Typical battery size: 100 kWh – several hundreds of kWh			*ESU: Energy storage unit	
	Source	Current	Target 2035	
Typical market size (GWh/year)		~0	~2,5	
KPI (ESU* level)	Conditions	State of art	Target 2030	
Cell/ESU weight ratio (%)	Full ESU (including rack, gas exhaust system, BTMS, BMS)	60	70	
Cell/ESU volume ratio (%)	Full ESU (including rack, gas exhaust system, BTMS, BMS)	30	60	
Operating lifetime expectation	10 years of operation	~50,000-80,000h	<ship lifetime<="" th=""></ship>	
Cost (€/kWh)	Full ESU (including rack, gas exhaust system, BTMS, BMS)	1,300	600-700	
KPI (cell level)	Conditions	State of art	Target2030	
Gravimetric energy density (Wh/kg)	1C charge and 3C discharge, 25°C	~100	200	
Volumetric energy Density (Wh/L)	1C charge and 3C discharge, 25°C	200	400-500	
Cycle life [80% SOH] (nb of cycles)	25% DOD, 25°C, 4C charge and discharge	25,000-50,000	>80,000	
Hazard level	EUCAR cell-level safety performance	<=5	<=2	
Cost (€/kWh)		300	150	

D1.3 Road map for battery productions

Table 1 – Battery cost target, 3000 cycles

Battery cost target (system costs) [€/kWh]						
3000 cycles		Electricity price [€/kWh]				
		0.01	0.05	0.10	0.15	
	300	276	156	6	-144	
Fuel price [€/ton]	400	332	212	62	-88	
	500	388	268	118	-32	
	600	443	323	173	23	
	700	499	379	229	79	
	800	555	435	285	135	
	900	610	490	340	190	
	1000	666	546	396	246	

Table 2 – Battery cost target, 6000 cycles

Battery cost target (system costs) [€/kWh]					
6000 cycles		Electricity price [€/kWh]			
		0.01	0.05	0.1	0.15
	300	552	312	12	-288
Fuel	400	664	424	124	-176
	500	775	535	235	-65
	600	886	646	346	46
price	700	998	758	458	158
[€/tonj	800	1109	869	569	269
	900	1220	980	680	380
	1000	1332	1092	792	492

Table 3 – Battery cost target, 10000 cycles

Battery cost target (system costs) [€/kWh]						
10000 cycles		Electricity price [€/kWh]				
		0.01	0.05	0.1	0.15	
	300	921	521	21	-479	
Fuel price [€/ton]	400	1106	706	206	-294	
	500	1292	892	392	-108	
	600	1477	1077	577	77	
	700	1663	1263	763	263	
	800	1848	1448	948	448	
	900	2034	1634	1134	634	
	1000	2220	1820	1320	820	

D1.3 Road map for battery productions

D1.3 Road map for battery productions

NAME	CHALLENGES/BOTTLENECKS
Specific energy	Bottleneck
Charging	Bottleneck
Temperature	Challenge/Bottleneck
Ageing	Bottleneck
Humidity	Challenge/Bottleneck
Thermal runaway & propagation	Challenge
Electrolyte off-gas	Challenge
Battery Management System (failure)	Challenge
Battery cell and chemistry	Bottleneck
Overcharge	Challenge
Overdischarge	Challenge
Overcurrent	Challenge
Excessive cold	Challenge/Bottleneck
External short circuit	Challenge
Mechanical damage	Challenge
External fire	Challenge/Bottleneck
Internal defect	Bottlenecks

Overview of:

- Supply chain
- Battery manufacturing process

Figure 1: Key players in the Li-Ion supply chain and market shares in percent

Figure 1: Current state of the art of battery manufacturing process [2]

Circular Economy		R0 Refuse	Make products redundant by choosing circular products that possess some or all of the qualities of the 9R's
	Smarter Product Use and Manufacture	R1 Rethink	Make product use more intensive (e.g. by sharing product)
		R2 Reduce	Increase efficiency in product manufacturing or use by consuming fewer natural resources and materials
		R3 Reuse	Reuse by another consumer a discarded product which is still in good condition and fulfils its original function
	Extend Lifespan of product and its parts	R4 Repair	Repair and maintenance of defective products so it can be used with its original function. Generally has not been tested and may not include a warranty
		R5 Refurbish	Restore a product and bring it up-to-date or restore functionality. Includes testing for defects prior to resell and usually includes a warranty
		R6 Remanufacture	Rebuilding of a product to original specifications by exchanging worn parts with repaired, used or new parts. The product or machine should perform as a new one and includes a warranty
		R7 Repurpose	Use discarded products or its parts in a new product with a different function
		R8 Recyclable Resource Recovery	Process materials to obtain the same (high grade) or lower grade quality
	Useful application of materials	R9 Recover	 Recover or 'cannibalise' from damaged products for the reuse of parts in order to facilitate remanufacturing or refurbising activities.
Linear Economy			(2) Incineration of material for energy recovery

From linear to circular economy analysis

Recycling profit from cells and process description

LCA for a small ferry - Ellen a European project:

The project brought the following results of the European project:

- 4300 KWh
- Energy efficiency: 85% transformer-propeller
- Energy consumption, round trip 22 miles (approximately 40 kilometers): 1600 kWh
- Pay-back time: 4-8 years
- CO2 emissions saved compared to a modern diesel: 2,520 tons / year
- Passenger satisfaction: very high

All the data are available in the European Report of the project

LCA for a small ferry with two scenario base on energy mix EU and on Renewable energy

> Global Warming Potential (GWP) Cumulative energy demand (CED) Aerosol formation potential (AFP) Acidification potential (AP) Eutrophication potential (EP) Net present value (NPV) Operating Expense (OPEX)

Conventional small ferry • Small Ferry only battery Energy mix EU Small Ferry only battery Renewable Energy

Total KPI Results

Figure 1 Small/medium size ferry radar chart

LCA for a RORO – Data collected from Fincantieri projects:

Will be analyzed a vessel with batteries on board:

- 5000 KWh
- Hybrid applications peak shaving, zero emission in ports
- Cold ironing
- LOA of 250 m
- Gross Tonnage of 50.000

LCA for a RORO

Three different scenarios were taken into account for calculation

Global Warming Potential (GWP) Cumulative energy demand (CED) Aerosol formation potential (AFP) Acidification potential (AP) Eutrophication potential (EP) Net present value (NPV) Operating Expense (OPEX)

Total KPI Results OPEX GWP CED 7.5 7.5 7.5 % Diff. to Ref. Conv Ferry % Diff. to Ref. Conv Ferry % Diff. to Ref. % DIn. Conv Ferry 0.0 0.0 0.0 SEA-BAT Ferry S1 -SEA-BAT Ferry S2 SEA-BAT Ferry S3 SEA-BAT Ferry S2 SEA-BAT Ferry S SEA-BAT Ferry S2 SEA-BAT Ferry S3 SEA-BAT Ferry S SEA-BAT Ferry S3 AP NPV AFP EP 12.5 6 12.5 12.5 5 10.0 % Diff. to Ref. Conv Ferry 10.0 10.0 % Diff. to Ref. % Diff. to Ref. % Diff. to Ref. Conv Ferry Conv Ferry Conv Ferry 7.5 7.5 7.5 5.0 5.0 5.0 2.5 2.5 2.5 1 0 0.0 0.0 0.0 -SEA-BAT Ferry S2 SEA-BAT Ferry S2 SEA-BAT Ferry S2 SEA-BAT Ferry S3 SEA-BAT Ferry S2 SEA-BAT Ferry S3 SEA-BAT Ferry S1 SEA-BAT Ferry S3 SEA-BAT Ferry S1 SEA-BAT Ferry S1 SEA-BAT Ferry S1 SEA-BAT Ferry S3

LCA for a RORO

THANK YOU FOR YOUR ATTENTION

Andrea Colavitto, PhD

Head of Research & Innovation andrea.colavitto@fincantierisi.it

www.fincantierisi.it

www.linkedin.com/company/fincantierisi