Mondragon Unibertsitatea

Modular partial power converter for fully electric marine applications

Mondragon Unibertsitatea

Presenter: Erik Garayalde Perez

Index

Faculty of Engineering

- 1. Introduction
- 2. HESS Design and Analysis
- 3. Partial Power Converter
 - Simulation
 - Experimental Results
- 4. Conclusions

Introduction

Electrification of maritime sector

Engineering

Background

 32,5% Energy efficiency improve
 Reduce our dependency on fossil fuels
 40% CO2 Reduction

 Image: Contract of the second second

Mondragon Unibertsitatea

*Source: DNV-GL (https://www.dnv.com/expert-story/maritime-impact/How-newbuilds-can-comply-with-IMOs-2030-CO2-reduction-targets.html)

Modular partial power converter for fully electric marine applications

Mondragon Unibertsitatea

Faculty of Engineering

Benefits of installing batteries on board ships:

- Backup for running generators
- · Fewer turbines needed online

Peak shaving

- Act as a buffer
- Level power seen by engines

Optimise load

- Optimise the operating point
 of the generators
- Reduce maintenance

Harvest energy

- Recover energy from cranes, drilling equipment, etc.
- Accommodate energy from renewables

Immediate power

 Instant power in support of generators **Backup power**

Battery system provides backup power, UPS like functionality

Faculty of Engineering

What are the main challenges to electrify a ship?

Selection of **battery technology** & Battery-pack **sizing**

Selection of the technology

2

Hybrid Energy Storage System

Design and Analysis

Faculty of Engineering

Why Energy Storage System Hybridization?

13.06.22

Partial Power Converter

Conclusions

Mondragon Unibertsitatea Faculty of

Engineering

Energy

Energy

HP battery type solution

Requirement

Sizing

- Power Sharing dependence
- Application Power Profile
- Cost Optimization

Faculty of Engineering

First Step

Power Sharing method selection

13.06.22

Partial Power Converter

Conclusions

Faculty of Engineering

LOAD

Engineering

Rule Based Control

Mondragon Unibertsitatea

Faculty of Engineering

Application Requirements and Power Profile

Electric Urban Ferry (Design Parameters):

_	Service Life:	10 Years
_	End of Life:	80% of initial capacity.
_	Max. Power:	150 kW
_	Min. Energy:	136 kWh
_	DC bus Voltage:	1000V
_	SoC Range:	90% - 10%

Modular partial power converter for fully electric marine applications

Engineering

Cost of the hybrid battery

Partial Power Converter

3

3.1

Architecture **Description**

Modular partial power converter for fully electric marine applications

NMC

Conclusions

LTO

Mondragon Unibertsitatea Faculty of

Engineering

20

20

1 module failure

Kpr increment for 1 module failure

Vout increment for 1 module failure

Modular partial power converter for fully electric marine applications

3.2

Simulation

Mondragon Unibertsitatea Faculty of Engineering

Modular partial power converter for fully electric marine applications

Mondragon Unibertsitatea Faculty of Engineering

- Both batteries work in soft switching most of the time.
- NMC works under **soft switching** for a **longer** period than LTO.
- The hard switching occurs with very low voltage, so the switching losses are low.

3.3

Experimental Results

 Q_5

 Q_6

 Q_7

 Q_8

4000

Mondragon Unibertsitatea Faculty of

Faculty of Engineering

Testing at different points

Parameter	Test point 1	Test point 2	Test point 3	Test point 4
$\pmb{P_{bat}}$ [kW]	2.27	2.53	2.78	3
V_{mod} [V]	300	300	300	300
V_{bat} [V]	225	250	275	295

Battery charging process

4

Mondragon Unibertsitatea Faculty of Engineering

Conclusions:

- Hybridization of Energy Storage Systems can be the optimal solution.
 - Nevertheless, it will depend on several factors:
 - Power Sharing method.
 - Consumption **Power Profile**.
 - Cell Cost.
- The Partial Power Converter can provide higher efficiencies.
 - \sim It only processes a small part of the total power.
 - $\sqrt{2}$ The Dual Active Bridge PPC can work in soft switching most of the time.
 - $\sqrt{2}$ 1 module failure can be assumed without compromising its operation.
 - It works better for small voltage differences between the input and the output.
 - $\overline{\mathbf{Q}}$ There is no galvanic isolation.

Mondragon Unibertsitatea

Faculty of Engineering

> Erik Garayalde egarayalde@mondragon.edu

Loramendi, 4. Apartado 23 20500 Arrasate – Mondragon T. 943 71 21 85 Eskerrik asko Muchas gracias Thank you

Faculty of Engineering