() SINTEF

100

DESIGN ALGORITHM FOR HYBRID ENERGY STORAGE SYSTEMS BASED ON MODULAR MULTI-LEVEL TOPOLOGY 1

Rene Barrera / Olve Mo / Giuseppe Guidi

Background (1)

- Battery technology with well defined trends High Energy (HE) vs. High Power (HP)
- Applications with Energy-Power requirements in between of what could be obtained with HE and HP battery systems end up with oversized HE or HP battery solutions.
- Hybrid Energy Storage System (HESS) brings a solution combining HE and HP technologies avoiding oversized solutions.

() SINTEF

Background (2)

- Battery system design is a complex process involving different design choices and device technology alternatives, with the optimal design linked to the core cell technology.
- Standard battery system topology with well defined design trends.
- HESS requires adaptation of new topologies with additional degrees of freedom in the battery system design.
- There is a need for analysing the interdependency between the different design choices in new HESS topologies as the optimal design could be far away from the optimal design of the standard battery systems.

HESS design methodology

 For a given couple of core units (HE and HP cells), the design algorithm explores the design space to bring up a set of design alternatives which represent the best tradeoff between the different performance indices while fulfil HESS specification and requirements.

() SINTEF

Modular Multilevel Hybrid Energy Storage System Topology

 N_{Y} strings (parallel) with N_{X} ESS modules in series $N_{X1}*N_{Y1}$ HE modules && $N_{X2}*N_{Y2}$ HP modules
 Cell
 BMS

 Cell
 BMS

 Cell
 BMS

 Cell
 External comm.

 DCDC
 12/24Vdc

ESS Module composed by two parts:

- Battery Module: energy storage based on battery cell array .
- **DC-DC converter**: Power flow control.
- Modular design allowing redundant functionality within the strings.

The sharing of power between HE and HP strings can be controlled by a master controller since power flow in each module can be controlled.

HESS design algorithm

Main inputs

- The power profile composed by N_{ts} power time series with expected annual repetition.
- High-Energy and High-Power Core Cells.
- HESS General specifications: Nominal DC Voltage, desired lifetime.

Main Outputs:

Set of HESS possible designs defined by the HE and HP sub-battery systems.

Performance Indices:

- Investment Cost
- Volume, Mass, efficiency
- Installed Energy and power capacity

SINTEF

HESS design algorithm

- Three main sub-algorithms:
- 1. Power Split:

7

- HE vs HP power sharing
- 2. HE&HP ESS Sizing:

Installed capacity vs lifetime

3. HE&HP MM-ESS design:

ESS module, number of modules, number of strings... vs. performance indices

Power Split Algorithm (1)

- Algorithm based on low pass filtering of the load power demand.
- Easy implementation in a real power management system but it does not guarantee that the true optimal power split is found.
- Power Split Parameters
 - The low pass filter cut-off frequency (F₀)
 - The maximum discharge power of HE battery (*P*_{HE.DCHmx})
 - The maximum charge power of HE battery ($P_{HE.CHmx}$).

 F_0 and $P_{HE.DCHmx}$ as free design parameters, then $P_{HE.CHmx}$ is estimated based on the energy used and available charging time

Power Split Algorithm (2)

- Different power split parameters per power time series.
- Multiple combinations of F₀ and P_{HE.DCHmx} are explored, with a performance space defined by:
 - The minimum usable energy of the battery sub-system
 - The required maximum continuous charge power
 - The required maximum continuous discharge power
 - The annual energy throughput (AET)

Power Split Algorithm (3)

- Power profile composed by two power time series
- Design space defined by 20 different values of F0 (0, ∞), and 10 different values for $P_{HE.DCHmx}$

SINTEF

10

ESS Sizing (1)

- To estimate the minimum capacity to be installed considering:
- 1. Required maximum continuous charging/discharge power
- 2. SoC within the defined range
- 3. To avoid battery cells end of life before end of design life.
- To account for calendar and cycling capacity degradation to ensure enough remaining capacity at end of design life.

 NDL: Design Life time

 NNOP: Accumulative Non-operation time within NDL

 E_{cycled}: Total Energy Troughput during NDL

 PmaxCH/DCH: Maximum required charge/discharge power

 C-ratemaxCH/DCH: Maximum allowed Charge/Dischage C-rate

Inputs from Load profiles Parameters from selected Cell tech Design Requirements

🖲 SINTEF

ESS Sizing (2)

- ESS sizing depends on core cell properties.
- Algorithm based on a simple degradation model considering only effects on capacity fade by calendar and cycling aging.
- Calendar aging as a linear process and happening whenever the battery is not cycled
- Cycling degradation proportional to the energy throughput.

MM-ESS design (1)

- Two battery sub-systems (HE & HP) needs to be defined for each power split combination.
- Main inputs:
 - Nominal string Voltage,
 - Minimum Energy to be installed,
 - Required Max. Cont. Charge/Discharge Power and
 - Core Cell properties.
- Main free design parameters:
 - Number of series and parallel cells per module
 - Maximum battery cell current utilization ratio
 - Number of modules per string (allowing redundant modules)

MM-ESS design (2)

Battery cell cooling system based on thermal conductive fins and cold plates

Heatsink design based on average thermal model.

Free design parameters:

- Fin material: Al vs. Cu
- Fin thickness
- Cold Plate thickness and Flow Rate

SINTEF

14

MM-ESS design (3)

DC/DC Power module based on half-bridge topology

Design algorithm based on predefined layout

Free Design Parameters:

- Number of parallel connected MOSFETS
- Heatsink type: Air-forced vs. water cooled

Design selection based on minimum cost with a constraint in volume/dimensions

DC/DC Converter Layout

🖲 SINTEF

HESS Design Example (1)

HESS Specs. and Requirements

Voltage	1000 V
Design Life	10 years

Battery Cells	High Energy	High Power
Chemistry	NMC @ REPT	LTO @Toshiba-SCiB
Capacity	155 Ah (565Wh)	23 Ah (53Wh)
Voltage [V]	3.65 {2.8, 4.3}	2.3 {1.5,2.7}
Cont. Discharge	310 A (2 C-rate)	92 A (4 C-rate)
Cont. Charge	186 A (1.2 C-rate)	92 A (4 C-rate)
Cost	159.5 EUR/kWh	0.25 EUR/Wh

Design constraints

Maximum cell weight per module	75 kg			
Max. p-p current ripple	15 % (per string)			
Max. Cell temperature	35 °C			
SoC range	80% (10% - 90%)			
Switching freq.	3000 Hz			
Max. string floating voltage for redundant modules	2 kV			
Device Technologies				

Semiconductors	Power MOSFET @ Infineon	
Capacitors	MKP snubber series B3262x @TDK	
Inductors	SIDAC Iron-Core Smoothing Reactors @ Siemens	
Heatsink	Air-forced: Extrusion & Stamped Al structure Water cooled: Al cold plate	

HESS Design Example (2) Performance trade-off

SINTEF

HESS Design Example (3) **Detailed solutions**

Design	Min Cost	Monotype HP
Parallel Strings	HE: 2 HP: 13	16
Series Modules	HE: 14 HP: 15	16
Redundant modules	HE: 2 HP: 0	1
Installed capacity	1833 kWh HE: 428 kWh HP: 1405 kWh	1791 kWh
Max. CH/DCH power	2.58 / 2.7 MW HE: 186/310 kW HP: 2.4/2.4 MW	2.355 / 2.355 MW
Module Voltage	HE: 98.55V HP: 78.2 V	75.92 V
HESS Cost	909.22 kEUR (495 EUR/kWh) HE: 97.67 kEUR HP: 809.6 kEUR	1028 kEUR (574 EUR/kWh)

SINTEF

SINTEF

HESS Design Example (4)

HESS Design Example (5) Core cell solutions

NMC @ REPT 155 Ah 310/186 A **2/1.5 C-rate** 159.5 (EUR/kWh) **1400 cycles**

NMC @ Samsung 94 Ah 150/72 A **1.6/0.76 C-rate** 150 (EUR/kWh) **4255 cycles**

20

Conclusion

- The proposed HESS design algorithm allows to explore the design space and brings out the optimal solution for each battery sub-system.
- The algorithm is easily adapted to the power profile and core cell characteristics.
- The trade-off of multiple performance indices can be analysed from the algorithm outputs.
- The proposed methodology can be used for analysing the interdependency between the different design choices at early stage of design.

Teknologi for et bedre samfunn

Evaluation approach

 To speed up the design evaluation, most of the components are modelled based on a metaparametrised meta-modelling approach.

a) Standard component design constants estimation

b) Proposed component design constants estimation

🕥 SINTEF

Evaluation approach - Example

Meta-parametrised meta-modelling approach

HESS performance evaluation

• Required amount of cells:

 $n_{cellHE} = N_{Y1} \cdot N_{X1} \cdot n_{sHE} \cdot n_{pHE}$ $n_{cellHP} = N_{Y2} \cdot N_{X2} \cdot n_{sHP} \cdot n_{pHP}$

Total Volume

 $Vol_{HESS} \approx N_{Y1} \cdot (N_{X1} \cdot Vol_{HEMOD} + Vol_{LHE}) + \cdots$ $N_{Y2} \cdot (N_{X2} \cdot Vol_{HPMOD} + Vol_{LHP})$

- Total Weight $W_{HESS} \approx N_{Y1} \cdot (N_{X1} \cdot W_{HEMOD} + W_{LHE}) + \cdots$ $N_{Y2} \cdot (N_{X2} \cdot W_{HPMOD} + W_{LHP})$
- HESS Cost

25

 $Cost_{HESS} \approx N_{Y1} \cdot (N_{X1} \cdot Cost_{HEMOD} + Cost_{LHE}) + \cdots$ $N_{Y2} \cdot (N_{X2} \cdot Cost_{HPMOD} + Cost_{LHP}) + Cost_{Other}$

SINTEF