

WIDE BAND GAP semiconductors for power electronics applications

> Amaia López de Heredia 10th June - 2022

> > ikerlan

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

01

Introduction

02

New WBG semiconductors

- GaN
- SiC

03

Experiences developed at Ikerlan

- GaN-based designs
- SiC-based designs

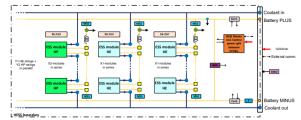
04 Conclusions

Private not-for-profit Technological Research Centre

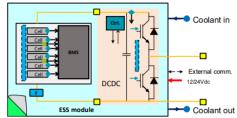
"OUR FINAL GOAL IS TO TRANSFER OVER 364 READY FOR PRESENTAND FUTURE TECHNOLOGICAL **TECHNOLOGY TO OUR** CHALLENGES ikerlan **INDUSTRIAL CLIENTS**" 12,4M€ TRANSFERS TO COMPANIES MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE IN RESEARCH PROJECTS IN2021 (DEG. GV. AGE andH2020) 25,4 M€ · 12.3 M€ FAGOR 글 BATZ AMPO LAULAGUN agor Electrónica 0.7 M€ OTHER 🔇 orkli CAE fagoredenlangroup MAPSA FAGOR 🗲 FAGOR 🗲 TRANSPORT AND 32 % IBERDROLA AUTOMOTIVE 9% MOBILITY FAGOR ARRASATE FAGOR AUTOMATION ð Sectors HEALTH 26 % MANUFACTURING 1% 17% ENERGY 1% AERONAUTICS acciona GH ABC CEGASA Ingeteam 🕥 vectla G Goizper Group 14% SERVICES AND OTHER INDUSTRIES 1. BASQUE COUNTRY 2. SANTANDER 3. OVIEDO 4. GIRONA 5. BARCELONA UC 53 Barcelona Supercomputing Center tecnun Untersteine de Navarra cnne (**"WE COLLABORATE WITH LEADING** 6. VALENCIA 7. SEVILLE 8. SANTIAGO DE COMPOSTELA 9. PARIS 10. BESANCON 11. GRENOBLE 12. LEUVEN 13. BRUSSELS USC 'U FC G2ELab Écule Centrale Par Vite Universited GIGIP Escuela Técnica Superior de INGENIERÍA DE SEVILLA **TECHNOLOGICAL CENTERSAND** 14. EDINBURGH 15. AACHEN 16. SIEGEN 17. ZURICH 18. VIENNA 19. LULEÅ 20. AAI BORG 21. OLDENBURG 22. USA A **UNIVERSITIES IN A GLOBAL SCOPE**" TU LINE CONTRACTOR Massachusett Institute of Technology isea Rwith UNIVERSITÄT ETHzürich OFFIS AALBORG UNIVERSIT

SEABAT project

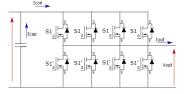
H2020 (2021-2024)


TECHNOLOGY

WHERE

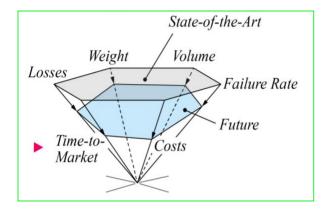


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 963560.

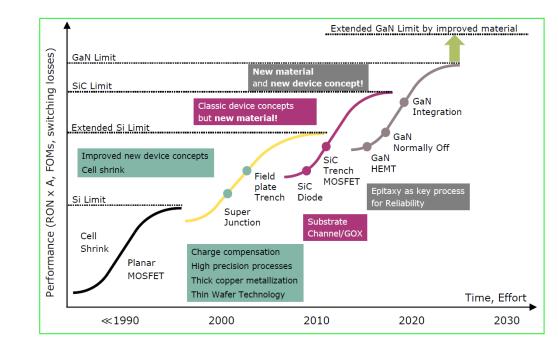

HESS system:

Each module:

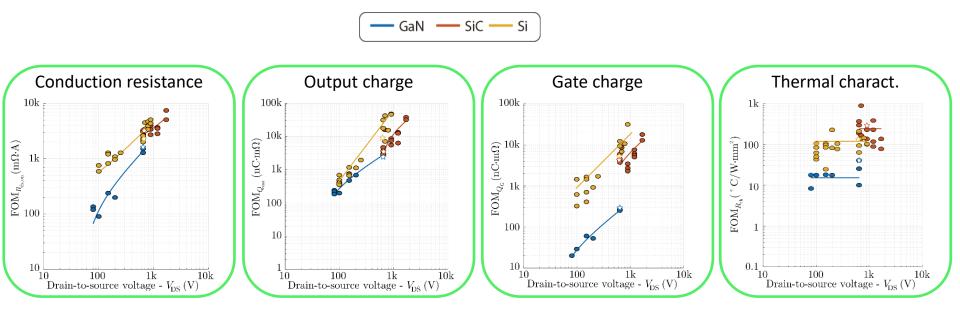
Each DC/DC converter:


- **WP4 (component development)**: Design and develop the components for a modular and flexible hybrid battery system <u>towards low cost</u>.
- Design: BMS, DC/DC converter, cooling system, control units, mechanical housing, system protections, etc.
- Currently: early stage of design.
- WP4 Milestone: May 2023, all components built.
- Modular topology: 12 modules connected in series to a 1kV DC bus
- Only two strings in the prototype: 155A/string
- Each module: DC/DC converter of 100V-155A
 - GaN: very high current, a lot of devices in parallel \rightarrow very expensive
 - SiC: very low voltage → not appropriate
 - Si: lower cost, good enough performance \rightarrow best balanced option
 - Low conduction resistance
 - Availability
 - Cheap

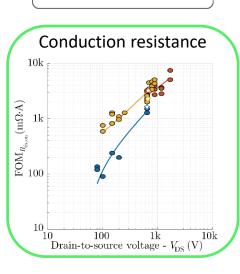
www. seabat-h2020.eu


Si MOSFET 200V

CONVERTERS OBJECTIVE

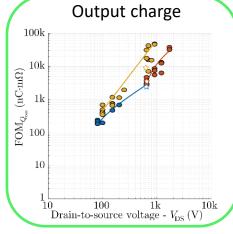

SEMICONDUCTORS EVOLUTION

* Sources: O. Häberlen, Technical Challenges to Safeguard the Gallium Nitride Roadmap, Ultimate GaN Kick-off meeting, May 14, 2019


COMPARISON OF DIFFERENT SEMICONDUCTORS MAIN FEATURES

ADVANTAGES WITH RESPECT TO Si

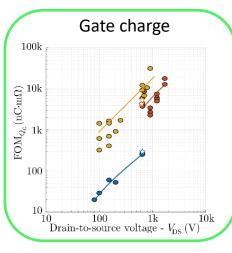
GaN	SiC
Operating voltage < 650 V	Operating voltage > 600 V
Low conduction losses	Similar losses in conduction


- GaN - SiC - Si

New WBG semiconductors

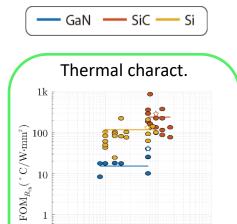
ADVANTAGES WITH RESPECT TO Si

GaN	SiC
Operating voltage < 650 V	Operating voltage > 600 V
Low conduction losses	Similar losses in conduction
Fewer switching losses	Fewer switching losses
It has hardly any reverse coating charges because it is bi-directional	SiC diode has no reverse coating charges



New WBG semiconductors

ADVANTAGES WITH RESPECT TO Si


GaN	SiC
Operating voltage < 650 V	Operating voltage > 600 V
Low conduction losses	Similar losses in conduction
Fewer switching losses	Fewer switching losses
It has hardly any reverse recovery charges because it is bi-directional	SiC diode has no reverse recovery charges
Requires very low gate driver charges	Requires lower gate charges
	Operating voltage < 650 V Low conduction losses Fewer switching losses It has hardly any reverse recovery charges because it is bi-directional

New WBG semiconductors

ADVANTAGES WITH RESPECT TO Si

100

Drain-to-source voltage - $V_{\rm DS}$ (V)

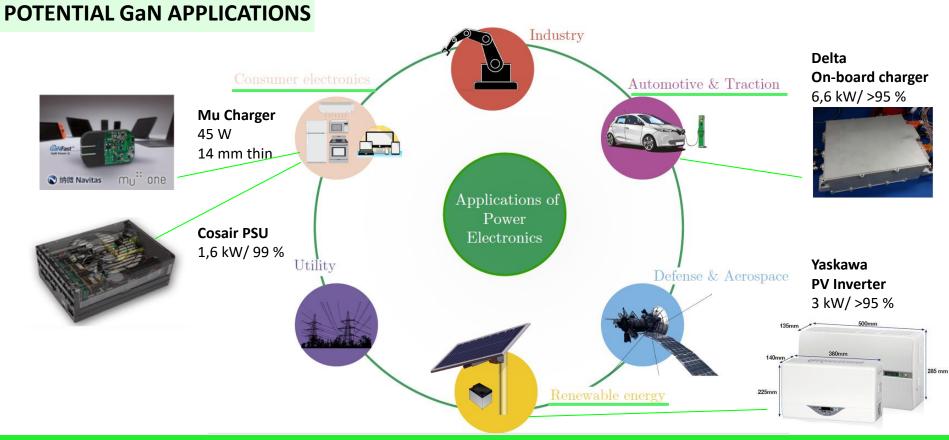
 $0.1 \stackrel{[]}{=} 10$

GaN	SiC
Operating voltage < 650 V	Operating voltage > 600 V
Low conduction losses	Similar losses in conduction
Fewer switching losses	Fewer switching losses
It has hardly any reverse coating charges because it is bi-directional	SiC diode has no reverse coating charges
Requires very low ignition power	Lower ignition charges
	High thermal cooling capacity

 $\int \frac{1}{3}$ Allows switching at high frequencies with similar losses!

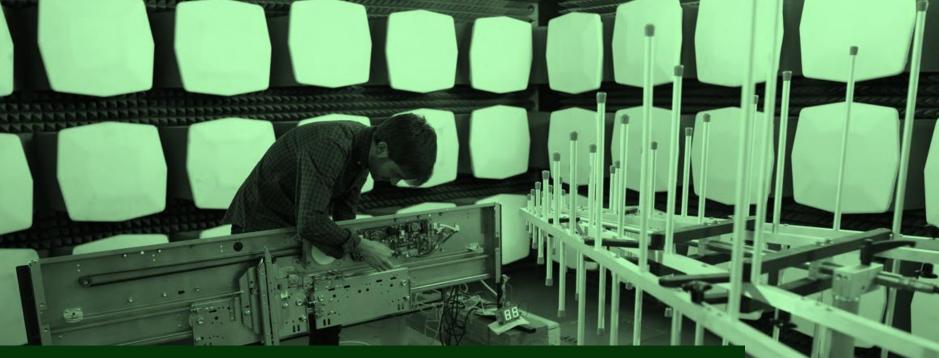
1k

10k


11

DISADVANTAGES WITH RESPECT TO THE SI

GaN	SiC		
Low gate driver voltage- danger of causing false on stages			
Even if it is bidirectional, it has a poor quality diode due to it structure – it is necessary to minimize dead-times to avoid unwanted losses	The SiC-MOSFET has a poor quality intrinsic diode – it is quite common to put an extra antiparallel SiC diode to minimize losses		
Less thermal cooling capacity – as the chip is so small, it has very small dissipation area			
Very high switching speed (dv/dt and di/dt) – EMI, degradation insulations, degradation bearings			
Lack of reliability data - immature technology at application level	In theory better reliability - still to be proven		
Cost (x5 relative to a Si-MOSFET 650V-40A). Expectations of a considerable price reduction when dedicated production will be launched for GaN.	Cost (x3 discrete – x10 modules > 1200 V). Downward trend, but will not reach Si prices in the future.		


© 2022 IKERLAN. All rights reserved

POTENTIAL SIC APPLICATIONS

© 2022 IKERLAN. All rights reserved

03. Experiences developed at Ikerlan

GaN

Auxiliary

power supp

16 mm

Control

connector

ECSEL/H2020 (2015-2018)

- Evaluating different cooling solutions (Top, Bot)
- 4 kW buck converter and MMC converter .
- Soft-switching and hard-switching analysis.
- Single switch and parallel study. .
- Efficiencies >99 % at 80 kHz CCM (<10 kW/l).
- Efficiencies >98 % at 300 kHz to DCM (<30 kW/l).

Power onnector

65 mu

100 $N_{\rm p} = 2$

99.5

99

98

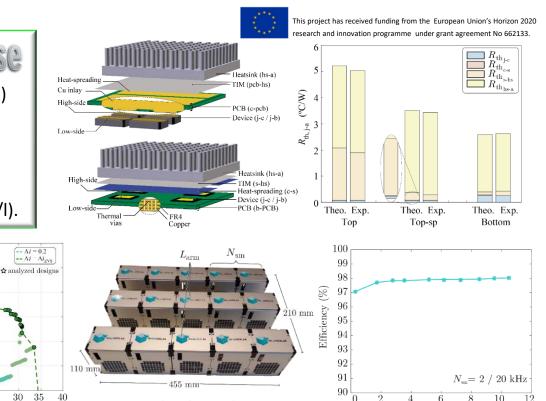
97.5

97

0

 $\eta (\%)$

Efficiency 98.5 20 kHz


80 kHz

5

15202530

Power density - ρ (kW/dm³)

10

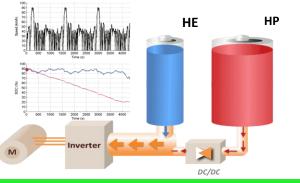
Three-phase MMC

www.powerbase-project.eu

Output Power (kW)

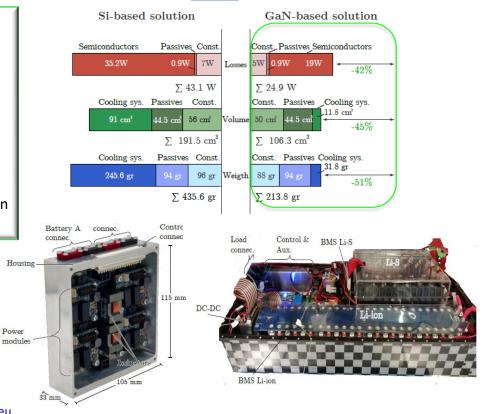
Experiences developed at IKERLAN

GaN


H2020 (2017-2021)

- DC-DC converter for hybridization of High Power and High Energy EV batteries.
- 48 V/ 240 W converter.
- Integrated, compact and low weight solution
- Dual Battery system based on Li-ion, Li-S and GaNbased DC-DC:
 - Nominal energy of **1972.9 Wh**
 - **101.90 Wh.kg-1 →** +31.99% with respect to single Li-ion

GHOST

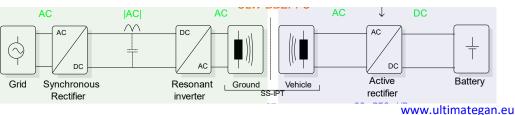

www.h2020-ghost.eu

• **13.31 Wh.L-1** \rightarrow +8.41% with respect to single Li-ion

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 770019.

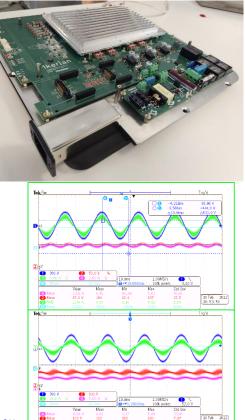
© 2022 IKERLAN. All rights reserved

GaN


WHERE

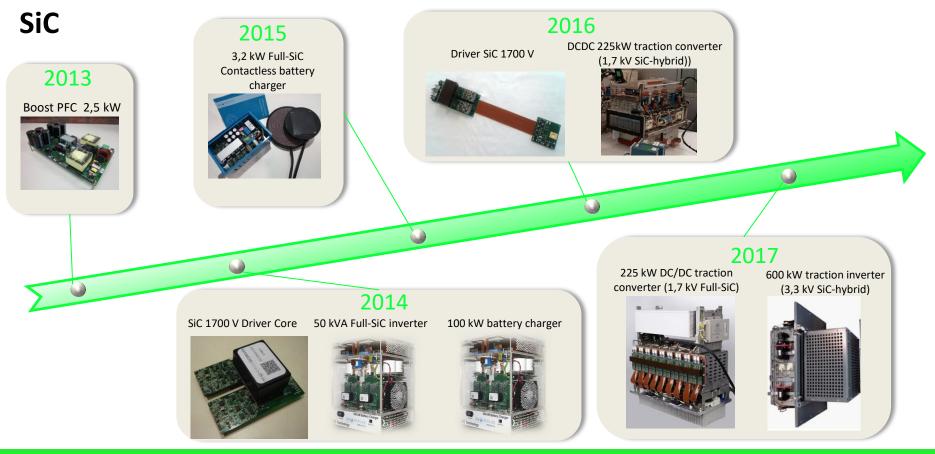
TECHNOLOGY

ECSEL/H2020 (2018-2022)



- Bidirectional domestic 3,6kW Wireless charger
- Low profile design: wallbox and coils in a unique housing.
- Increase the power density using a novel topology).
- 3,6 kW bidirectional charger experimentally validated.
 - Charging distance 100 mm.
 - Switching frequency 85 kHz based on J2954.
 - >96 % efficiency in back-to-back operation.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 826392.



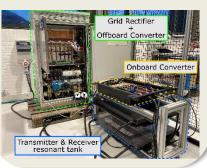
Experiences developed at IKERLAN

SiC

2019

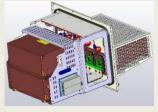
Study of commercial drivers for SiC (PI, Amantys, Isahaya)

2020 PV SiC 120 kW inverter (1,2k V Full-SiC)


Full-SiC Installation in Euskotren

2021

2021 Bidirectional wireless charger 50 kW (1,2kV-Full SiC)



2018 Photovoltaic SiC inverter 167 kVA (1,2 kV full-SiC)

2019

Traction inverter core (3,3 kV full-SiC)

2020

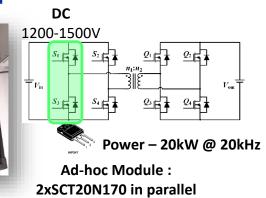
Laboratory tests traction unit 600 kW (3,3kV-Full SiC)

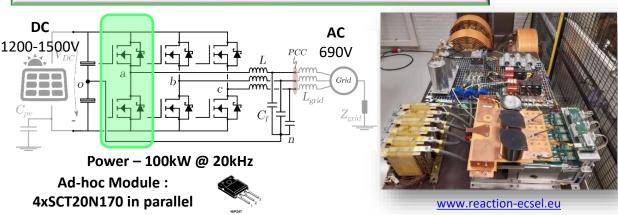
2018

Induction kitchen

7 kW (1,2 kV Full-SiC)

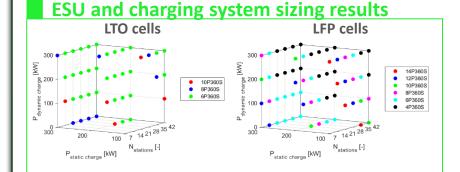
DC/DC Converter


SiC

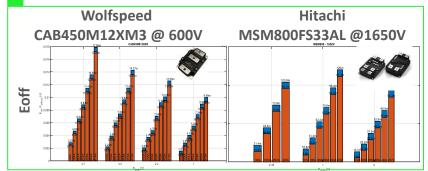

ECSEL/H2020(2018-2023)

- eu*R*op*EA*n si*C* (Silicon Carbide) eigh*T I*nches pil*O*t li*N*e
- 1500 Vdc-690Vac 3 phase 2-leveSiC Inverter.
 - Up to 100kW.
 - Switching frequency 20 kHz.
 - 98% target efficiency.
 - Experimentally validated
- 20 kW isolated DC/DC charger in design phase.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 783158.

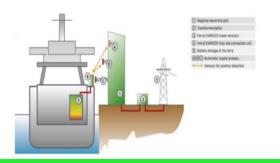

SiC

Shift2Rail (2021-2024)


- Dynamic Inductive Power Transfer in railway based on SiC power semiconductors.
- Trade-off study of D-IPT and onboard ESU:
 - Comparison of battery technologies.
 - Comparison of charging systems.
- Impact of SiC devices in D-IPT:
 - Characterization of 1200, 1700 and 3300 V SiC power modules in Zero Voltage Switching (ZVS).
- Ongoing: sizing of SiC-based D-IPT system.
 - Higher efficiency
 - Lower size

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101015423.

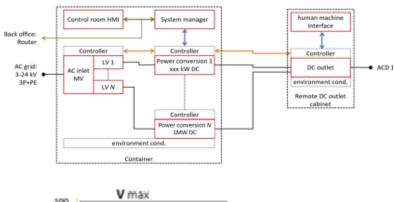
Estimation of Real-Eoff

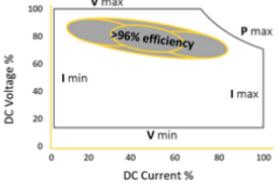

www.recet4rail.eu

RFCF

SiC

HORIZON EUROPE (2022-2025)

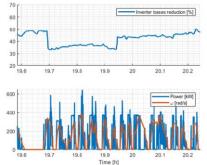

- Fast modular multi-MW charger for maritime application
- Objectives:
 - Improve efficiency by 20%
 - 50% compact charger
 - Reduce charging losses by 50%
 - Reducing operation and maintenance cost by 20%
- Analysis of SiC semiconductors for the charger.
- 2 Prototypes tested for Q2-2025.

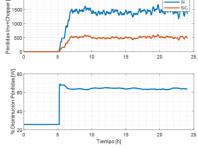


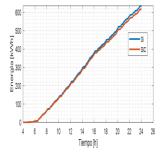
HYPOBATT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101056853.

SIC – EXPERIENCE IN RAILWAY TRACTION




EMU-952 from EUSKOTREN


SiC-hybrid solution

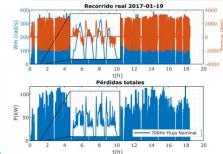
600kW inverter 3,3kV semiconductors Heat-pipe based cooling

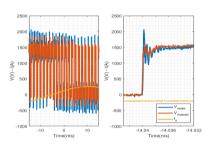
INSTALLATION IN OPERATION				
Installation date	September 2018			
Replacement	A single converter per train			
Losses reduction	35 % - 50 %			
Energy saving	1,4 % - 3 %			

© 2022 IKERLAN. All rights reserved


Experiences developed at IKERLAN

SIC – EXPERIENCE IN RAILWAY TRACTION




Full-SiC solution

600kW inverter 3,3kV semiconductors Heat-pipe based cooling

	INCITATI	Automation	EUSKOLIEII		
INSTALLATION IN OPERATION					
Installation date	Q2 2021				
Volume reduction	-40 %				
Weight reduction	-25 %				
Losses reduction	65 %				
Cost	+220 % (@2	2020)			

© 2022 IKERLAN. All rights reserved

04. Conclusions

Conclusions

- Every WBG semiconductor has its optimal scope of work
 - GaN -> for low voltages and power, smooth switching and high frequency (>100 kHz)
 - SiC -> for high voltages and hard switching (<200 kHz)

• WBG technology allows to raise switching frequencies well above what silicon allows

- Minimizes the volume and weight of passive components considerably.
- Minimizes losses significantly in converters (smaller cooling systems).
- Minimizes acoustic noise to non-audible ranges.
- Improvements need to be evaluated at System level, not only at converter level.

Conclusions

- High current SiC product range available <1200V (discrete and modules)
 - Starting to produce serial devices, but still the price is high.
 - SiC is a promising technology in terms of reliability.
 - GaN can still be considered immature for mass production products.
 - GaN's manufacturing method promises significant price drop.
- Research should focus on the impact of rapid switching
 - In the degradation of magnetic components insulation due to high dv/dt.
 - On EMI effects and filters to comply with EMC regulations.

THANK YOU VERY MUCH

IKERLAN P.º José María Arizmendiarrieta, 2 - 20500 Arrasate-Mondragón T. +34 943712400 F. +34 943796944

WHERE TECHNOLOGY IS AN ATTITUDE

