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Abstract. This paper presents a cost modeling framework for battery systems. 

Based on findings in battery cost modeling literature, there is a need for scala-

ble, systematic frameworks to model cost. The framework in this paper, which 

is developed with a systems approach in mind, incorporates parametric cost 

models that consider scaling in component rating, future cost prediction and 

economies of scale with a limited set of tunable parameters per component. 

This framework is employed to construct an instance of a novel battery archi-

tecture, the module level converter topology, in a scalable way using different 

classes for (sub-)systems and indivisible components, based on the desired 

power output and energy content of the system. By doing so, the system costs 

of the novel hybrid battery architecture are compared to a baseline battery to-

pology in terms of cost decomposition. The prospects of this novel architecture 

are also mapped out in terms of production volume and future component costs. 
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1 Introduction 

In the transportation sector electrification, modular battery systems and hybrid batter-

ies have been identified as promising strategies to meet the critical requirements on 

energy, power density, lifetime and safety. Today, multiple promising topologies for 

battery hybridization can be identified. Missing however are systematic cost modeling 

approaches that can evaluate the total system capital cost with respect to key require-

ments such as battery capacity, voltage, and power output. 

In the past decades, various cost models on batteries have been proposed. Overall, 

cost models presented in existing literature, based on their purposes, capture different 

elements in the battery industry on various fidelity levels. Fabian et al. grouped these 

models into four categories: intuitive models, analogous models, parametric models, 

and bottom-up models [1]. An intuitive model is largely based on expert insights and 

therefore requires little input data regarding the elements underlying the batteries [2, 

3]. For this reason, these models have little reproducibility and their validity also de-

creases over time due to technological advancement and the change of macro-

economic situations. Analogous models make projections by performing regression 

analyses on historical data. For instance, Penisa et al. [4] and Schneider et al. [5]  
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presented analogous models to project respectively the battery system costs and bat-

tery cell costs evolution in the future. However, due to the limited representation of 

the internal structure, it is challenging for analogous models to consider the evolution 

of different cost elements over time and the economy of scales. In order to consider 

more factors (such as technology advancement, dependency on critical materials, and 

economy of scales (EoS)), one should leverage a higher fidelity model – the so-called 

parametric model – where the cost elements are represented by cost functions charac-

terizing the cost evolution as a function of time, size, and production [6,7,8]. One of 

the most comprehensive cost model in this spectrum is the BatPaC model developed 

by Argonne National Laboratory which comprises of a comprehensive battery system 

decomposition, critical design considerations (e.g., power, energy, voltage, etc), and 

other fixed investments costs and overhead costs [9]. Nevertheless, the high fidelity of 

the model, in combination with it being excel-based, reduce its scalability, transpar-

ency, and customizability. Hence, it is limited in performing analysis on the cost 

components and their evolution over time. In short, the fundamental difference be-

tween a parametric model and an analogous model is the use of equations on cost 

elements level. The most sophisticated cost models – the bottom-up models – add 

another layer of complexity by modeling the complete manufacturing process in a 

chronological manner. The cost is therefore estimated based on the cost incurred by 

each step in manufacturing [10,11,12].  

To the best of the authors’ knowledge, the cost modeling framework presented in 

this study is the first scalable, transparent, and modular parametric cost model that 

allows the user to analyze the cost evolution of selected cost elements against size, 

production, and technology advancements over time. In this regard, this paper pre-

sents a scalable, transparent, and modular battery system cost modeling framework 

that captures individual components and their dependency relationships and is capable 

of performing trend analysis of battery size, production upscaling and future cost. 

The battery architecture for which the cost model is employed features a scalable 

module level converter (MLC) topology. Herein, the Hybrid Energy Storage System 

(HESS) capacity is determined by the number of parallel “strings”, each of which is 

comprised of either high power (HP) or high energy (HE) cell technology. Each string 

contains several “modules” connected in series, which are fully managed battery 

packs that include a DCDC-converter. 

2 Framework outline 

This section will outline the developed framework, that is set up with a systems-

approach in mind, allowing with minimal effort to construct a system-of-systems 

hierarchy of components at different levels. The object-oriented implementation of 

the first version is developed in Python due to its coding flexibility and the absence of 

computationally demanding calculations. 

A separation into classes is considered, to generalize functionality as much as pos-

sible. The two main classes are “System” and “AtomicComponent”. Systems can own 

components, atomic components cannot. Fig. 1 shows the derived classes. 
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Fig. 1. Class hierarchy within the framework 

The attributes and methods of the “System” class can be grouped into 3 themes: man-

aging components, electrical properties and cost modeling functionalities, addressed 

in Section 3. The “AtomicComponents” class only includes rating and cost modeling 

attributes. The extended “BatteryCell” class includes the electrical properties as well. 

A system is generated based on its requirements and a set of heuristics: 

─ The bus voltage and hybrid (HE/HP) capacities in ampere hours must be specified. 

─ The (fixed size) modules are placed in series to obtain the desired bus voltage. 

─ The ampere hour capacity of a module depends on the degree of downregulation 

by the DCDC-converter to match the desired bus voltage across all modules. 

Whenever a HESS system instance is created, it creates for both HE and HP capaci-

ties a number of strings, which in turn allocate modules to the strings. At every sys-

tem level a number of atomic components are also added (mostly from an Excel file). 

After this, the system is set up for queries, PBS generation or cost analyses. 

3 Cost modeling 

In Section 3.1, a single, fixed cost is attributed to each system component along with 

a cost category. This is extended with cost variability modeling in Section 3.2. 

3.1 System cost construction per category 

To compute system cost, each component has a cost and category. Given the scalable 

framework, total (sub-)system cost is easily constructed, as can be seen in Fig. 2. 

 
Fig. 2. Cost per category at HESS, string and module level 

3.2 Parametric cost modeling 

The fixed cost approach is extended to three cost dimensions, being: 
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1. Component scaling, i.e. increased cost due to e.g. higher component power rating 

2. Future cost prediction, i.e. potential price declines due to technology resources, etc. 

3. Economies of scale: higher discount due to higher production/sales volumes, etc. 

For each of these a simple parametric model is proposed. The general equation is 

expressed by Equation 1. The fixed reference cost, 𝑐𝑜𝑠𝑡𝑟𝑒𝑓 from Section 3.1 repre-

sents the cost (1) at a given, normative rating (2) at the present (3) as a single item. 

      𝑐𝑜𝑠𝑡𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑐𝑜𝑠𝑡𝑟𝑒𝑓 ∗ 𝑓𝑠𝑐𝑎𝑙𝑖𝑛𝑔(𝑅, 𝑓𝑐𝑠) ∗ 𝑓𝑝𝑟𝑒𝑑(𝑡𝑦𝑟 , 𝜏50) ∗ 𝑓𝐸𝑜𝑆(𝑁, 𝑐𝑒𝑜𝑠 , 𝑓𝑙𝑣𝑑) (1) 

Component scaling cost model. The components rating ratio 𝑅 compared to a refer-

ence rating affects its cost by Equation 2. A rounding function with 6 steps per decade 

is introduced to mimic the discreteness of product sizes (i.e. E6-scale for capacitors). 

Secondly, 𝑓𝑐𝑠 accounts for the price trend which typically introduces a discount for 

higher rated components (i.e. 10x the rating at only 6x-8x the price).  

                                           𝑓𝑠𝑐𝑎𝑙𝑖𝑛𝑔(𝑅, 𝑓𝑐𝑠) = 10(1−𝑓𝑐𝑠)
𝑐𝑒𝑖𝑙(6 log10(𝑅))

6  (2) 

Future cost prediction. Since price forecasting has limited accuracy, a simple single-

parameter exponential represents the future cost factor is given by equation 3.: 

                                                           𝑓𝑝𝑟𝑒𝑑(𝑡𝑦𝑟 , 𝜏50) = 2
−𝑡𝑦𝑟

𝜏50  (3) 

Where 𝑡𝑦𝑟 is time in years and 𝜏50  is the expected 50% time for each component. A 

negative 𝜏50 can accommodate inflation if needed. 

Economies of scale (EoS) cost model. With higher volumes, price per component 

tends to drop. sometimes significantly. To match this, a sublinear trend is proposed 

                                              𝑓𝐸𝑜𝑆(𝑁, 𝑐𝑒𝑜𝑠 , 𝑓𝑙𝑣𝑑) = 𝑁−𝑐𝑒𝑜𝑠+𝑐𝑒𝑜𝑠𝑒−𝑓𝑙𝑣𝑑√𝑁
 (4) 

The coefficient 𝑐𝑒𝑜𝑠 accounts for high-volume discount, although the discount margin 

flattens out. Resource scarcity is not modeled. The low volume discount factor 𝑓𝑙𝑣𝑑 is 

added to better track low volume price trends. Fig. 3 features all three cost trends. 

 

Fig. 3. The three cost functions for different parameter 
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4 Trend analysis 

First, the MLC topology is compared with a baseline topology (i.e. single battery pack 

with large DCDC converter). Cost is impacted by differences in component count as 

well as component ratings. Price comparison in Table 1 reveals that for the current set 

of cost parameters, the MLC topology still ends up ~30% higher in cost than the base-

line design, independent of system size (although upscaling from 1 to 5 MWh saves 

~18% due to economy of scales for both topologies). Costly additional CPU’s and 

intermodular connectors disadvantage the MLC topology. However, in contrast with 

baseline the MLC topology is hybrid-capable (allowing capacity savings). 

For a second case, the cost for a 1 MWh HESS is projected into the future, also po-

tential production upscaling is considered. Fig. 4 show the price prediction depending 

on volume for purchase now and in 10 years. Cost categories reveal lithium cells will 

continue to become cheaper over time and with production upscaling, which may 

affect cost composition of battery packs, as lithium may no longer dominate. 

Table 1. Relative system cost in € per MWh compared to Baseline 

Cost category 1MWh Baseline  1MWh MLC 5MWh Baseline 5MWh MLC 

Total cost 259k    (100%) 331k     (+27%) 1069k   (-18%) 1423k    (+10%) 

Cells 88k    (100%) 88k       (+0%) 380k   (-13%) 380k     (-13%) 

Control 1k    (100%) 22k (+2121%) 2.6k   (-47%) 95k (+1804%) 

Electrical 72k    (100%) 113k     (+58%) 260k   (-27%) 482k    (+35%) 

Mechanical 29k    (100%) 28k        (-3%) 123k   (-15%) 122k     (-16%) 

Thermal 70k    (100%) 80k     (+13%) 303k   (-14%) 345k       (-2%) 

 

Fig. 4. System cost depending on production volume in present (left) and 10 years (right) 

5 Conclusion 

A scalable, parametric cost modeling framework has been presented, which was ap-

plied to hybrid batteries for vessel applications. This allowed assessment of future 

viability of modular battery topologies at sea. Further development paths may include 
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further generalization of the framework to arbitrary battery architectures and detailing 

of data-based cost parameters to improve the predictive power of the framework. 
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